Phân tích hướng và ánh xạ pha Nhiễu xạ điện tử tán xạ ngược

Chỉ mục mô hình

Tổng quan về quy trình chỉ số hóa EBSD, cho thấy quá trình thu thập mẫu gợn cho đến xác định hướng tinh thể.[23]

Chỉ số hóa thường là bước đầu tiên trong quá trình EBSD sau khi thu thập mẫu gợn. Điều này cho phép xác định hướng tinh thể tại một thể tích đơn lẻ của mẫu từ nơi mà mẫu gợn đã được thu thập.[50][51] Với phần mềm EBSD, thường sử dụng một thuật toán toán học dựa trên phép biến đổi Hough đã được sửa đổi để phát hiện các dải mẫu, trong đó mỗi pixel trong không gian Hough đại diện cho một đường/dải duy nhất trong EBSP. Phép biến đổi Hough cho phép phát hiện các dải mẫu, một công việc khó khăn để tìm thấy bằng máy tính trong EBSP ban đầu. Sau khi vị trí các dải đã được phát hiện, có thể liên kết các vị trí này với hướng tinh thể bên dưới, vì góc giữa các dải đại diện cho góc giữa các mặt trong lưới tinh thể. Do đó, khi vị trí/góc giữa ba dải đã biết, có thể xác định được giải pháp hướng. Trong các vật liệu có đối xứng cao, thường sử dụng nhiều hơn ba dải để đo và xác minh đo lường hướng.

Để nghiên cứu vật liệu, mẫu tán xạ sẽ được xử lý trước để loại bỏ nhiễu, sửa các sai sót của bộ phận phát hiện và chuẩn hóa cường độ. Sau đó, mẫu tán xạ này sẽ được so sánh với một thư viện các mẫu tham chiếu cho vật liệu đang được nghiên cứu. Những mẫu tham chiếu này được tạo ra dựa trên cấu trúc tinh thể của vật liệu và hướng của lưới tinh thể đã biết trước. Bằng cách sử dụng nhiều thuật toán khác nhau, ta sẽ xác định được hướng của lưới tinh thể tạo ra sự phù hợp tốt nhất với mẫu tán xạ đo được. Hiện nay, phần lớn các phần mềm EBSD thương mại đều thực hiện ba phương pháp dẫn đầu của chỉ mục: bỏ phiếu ba bộ;[52][53] Giảm thiểu sự khác biệt giữa mẫu thực nghiệm và hướng tính toán để tìm được hướng phù hợp nhất,[54][55] Việc cộng thêm hoặc lấy trung bình của các mẫu láng giềng và tái chỉ mục, NPAR, là một phương pháp thường được sử dụng để cải thiện độ chính xác của kết quả chỉ mục hướng[56]) để tìm ra một giải pháp duy nhất cho hướng tinh thể đơn, có liên quan đến các hướng tinh thể khác trong lĩnh vực quan sát.[57][58]

Triplet voting là quá trình xác định nhiều bộ "triplet" liên quan đến các giải pháp khác nhau cho hướng tinh thể; mỗi hướng tinh thể được xác định từ mỗi bộ triplet sẽ nhận được một phiếu. Nếu bốn mẫu cho cùng một hướng tinh thể, thì sẽ có bốn phiếu (tương đương với tổ hợp ba lấy bốn) được gửi đến cho giải pháp cụ thể đó. Do đó, hướng tinh thể ứng viên có số phiếu cao nhất sẽ là giải pháp có khả năng cao nhất cho hướng tinh thể đang có. Số phiếu cho giải pháp được chọn so với tổng số phiếu mô tả sự tự tin trong giải pháp cơ bản. Cần thận trọng trong việc hiểu và giải thích chỉ mục 'độ tự tin' này, vì một số hướng tinh thể giả đối xứng có thể dẫn đến sự thiếu tự tin cho một giải pháp so với giải pháp khác.[59][60][61] Để giảm thiểu độ khớp, quá trình bắt đầu bằng việc xác định tất cả các hướng có thể cho một bộ triplet. Khi thêm vào nhiều dải hơn, số lượng các hướng ứng viên giảm, và điều này dẫn đến việc hội tụ đến một giải pháp duy nhất cho hướng tinh thể. Sự khớp giữa hướng đo lường và mẫu thu được có thể được xác định.

Tổng thể, quá trình chỉ mục mẫu phân tán tia electron bằng EBSD liên quan đến một tập hợp phức tạp các thuật toán và tính toán, nhưng là quan trọng để xác định cấu trúc tinh thể và hướng của vật liệu với độ phân giải không gian cao. Quá trình chỉ mục liên tục được cải tiến, với các thuật toán và kỹ thuật mới được phát triển để cải thiện độ chính xác và tốc độ của quá trình.

Sau đó, chỉ số độ tin cậy được tính toán để xác định chất lượng của kết quả chỉ mục. Chỉ số độ tin cậy dựa trên độ khớp giữa mẫu đo và mẫu tham chiếu. Ngoài ra, nó còn xem xét các yếu tố như mức độ nhiễu, độ phân giải của cảm biến và chất lượng mẫu.

Tâm mẫu phân xạ

Để liên kết với hướng tinh thể, giống như trong phân tích phân tán tia X, cần phải biết hình học của hệ thống. Trong đó, tâm mẫu phân xạ miêu tả khoảng cách giữa khối lượng tương tác với cảm biến và vị trí gần nhất giữa phosphor và mẫu trên màn hình phosphor. Ban đầu, nghiên cứu sử dụng một tinh thể đơn đã biết hướng được đưa vào phòng thí nghiệm SEM và một đặc điểm cụ thể của EBSP được biết tương ứng với tâm mẫu phân xạ. Các phát triển tiếp theo liên quan đến việc tận dụng các mối quan hệ hình học khác nhau giữa việc tạo ra EBSP và hình học phòng thí nghiệm (đổ bóng và di chuyển phosphor).[62][58]

Rất tiếc, mỗi phương pháp này đều khó khăn và có thể dễ bị lỗi hệ thống cho một nhà điều hành chung. Thông thường, chúng không thể được sử dụng dễ dàng trong các SEM hiện đại với nhiều mục đích được chỉ định. Do đó, hầu hết các hệ thống EBSD thương mại sử dụng thuật toán chỉ mục kết hợp với sự di chuyển lặp lại của hướng tinh thể và vị trí tâm mẫu đề xuất. Giảm thiểu sự khớp giữa các dải nằm trong các mẫu thí nghiệm và trong bảng tra cứu có xu hướng hội tụ vào vị trí tâm mẫu phân xạ với độ chính xác khoảng ~0,5-1% của chiều rộng mẫu. [23][6]

Những phát triển gần đây của AstroEBSD và PCGlobal đã tăng độ chính xác trong việc xác định trung tâm mẫu (PC) và do đó là độ co dãn đàn hồi bằng cách sử dụng phương pháp phù hợp mẫu. Các phần mềm mã nguồn mở MATLAB này đã giúp mô phỏng mẫu bằng EMSoft. Việc này giúp giảm thiểu sai số hệ thống khi xác định độ chính xác của PC. Tuy nhiên, các phương pháp truyền thống khác vẫn còn tồn tại và có thể sử dụng được trên SEM hiện đại với nhiều mục đích được chỉ định.[63][64][65][66][67]

Bản đồ EBSD

Bản đồ hướng EBSD (đã chỉ mục) cho thấy martenxit gai sắt với các ranh giới góc lớn hơn 10°.

Kết quả chỉ mục được sử dụng để tạo ra một bản đồ về hướng tinh thể tại mỗi điểm trên bề mặt đang được nghiên cứu. Do đó, việc quét tia electron theo một kiểu quy định (thường là một lưới hình vuông hoặc lục giác, được điều chỉnh để khắc phục hiện tượng co dãn ảnh do nghiêng mẫu gây ra) sẽ tạo ra nhiều bản đồ vi mô về cấu trúc phức tạp.[68][69] Những bản đồ EBSD có thể trình bày không gian hướng tinh thể của vật liệu được khảo sát và được sử dụng để khảo sát microtexture và hình thái mẫu. Các bản đồ này có thể miêu tả hướng hạt, ranh giới và chất lượng mẫu vết quang phổ (hình ảnh). Các công cụ thống kê khác nhau có thể đo trung bình sai khác hướng, kích thước hạt và kết cấu tinh thể học. Từ tập dữ liệu này, người dùng có thể tạo ra nhiều bản đồ, biểu đồ và đồ thị.[70][71]

Dữ liệu về hướng có thể được trực quan hóa bằng nhiều kỹ thuật khác nhau, bao gồm mã màu, đường đồng mức và các hình vẽ định hướng tinh thể.[72][73]

Tuy nhiên, việc căn chỉnh kính hiển vi, sự thay đổi vị trí hình ảnh, hiện tượng méo hình quét tăng lên khi thu nhỏ độ phóng đại, bề mặt mẫu chưa chuẩn bị tốt, bị nhiễm bẩn và gồ ghề, thay đổi trong vật liệu, sự cố định vị trí ranh giới và chất lượng bộ dò có thể dẫn đến sự không chắc chắn trong việc xác định hướng tinh thể.[74][74] Cơ bản, tỷ lệ tín hiệu/độ ồn của mẫu EBSD phụ thuộc vào vật liệu và giảm đi với tốc độ thu thập và dòng điện tia vô hướng cao, điều này ảnh hưởng trực tiếp đến độ phân giải góc của các đo lường.[74][74]